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A new variational perturbation theory is developed based on the q−deformed oscillator.
It is shown that the new variational perturbation method provides 200 and 10 times better
accuracy for the ground state energy of anharmonic oscillator than the Gaussian and
the post Gaussian approximation, respectively, for weak coupling.

KEY WORDS: q–deformation; anharmonic oscillator; nonperturbative approxima-
tion.

There have been many proposals to establish methods of extracting nonpertur-
bative information from quantum mechanical and quantum field theoretic systems,
such as 1/N expansion and methods based on Dyson–Schwinger equation (Zinn-
Justin, 1996). One of the successful ways to obtain nonperturbative information is
the variational perturbation theory (Jackiw and Kerman, 1979; Stevenson, 1984).
Many variants of the variational perturbation theory based on the Gaussian ap-
proximation have been used to study various aspects of physical systems (Amore
et al., 2004; Bak, et al., 2000; Cea and Tedesco, 1997; Kleinert, 1993, 1995; Kim,
et al., 2004, 2005; Lee and Yee, 1997; Lee et al., 1998; Okopinska, 1987,1996;
You et al., 1998). Although the variational perturbation theory provides one with
systematic correction terms to the variationally determined approximation, it has
a limitation that only the Gaussian wave function(al) may be used as a variational
trial wave function(al) for the most physical systems. In this paper we attempt to
establish a new variational perturbation theory based on the q−deformed oscil-
lator (Bonatsos and Daskaloyannis, 1997; Macfarlane, 1989), which provides a
better approximation than that based on the Gaussian approximation.

Quantum anharmonic oscillator has been frequently used in developing vari-
ous approximation methods in quantum mechanics and quantum field theory (Bak
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et al., 2000; Cea and Tedesco, 1997; Dineykhan et al., 1995; Kleinert, 1993, 1995;
Lee and Yee, 1997; Lee et al., 1997; You et al., 1998; Zinn-Justin, 1996). To
develop a new variational perturbation method we will consider the anharmonic
oscillator given by the Hamiltonian,

Ĥ = p̂2

2
+ ω2

2
x̂2 + λ

4
x̂4. (1)

We first illustrate some essential procedures of the variational perturba-
tion theory based on the Gaussian approximation. We start by writing the
Hamiltonian (1) as the sum of the Gaussian Hamiltonian, HG, and the perturbation
term, VI , as

Ĥ = ĤG + VI , (2)

where

ĤG ≡ 1

2
p̂2 + �2

G

2
x̂2, VI = ω2 − �2

G

2
x̂2 + λ

4
x̂4. (3)

Since the Gaussian Hamiltonian is that of a simple harmonic oscillator, it can

be written in terms of the creation and the annihilation operator, ÂG =
√

�G

2h̄
x̂ +

i√
2h̄�G

p̂, in the quadratic form:

ĤG = h̄�G

2

(
Â

†
GÂG + ÂGÂ

†
G

)
. (4)

Moreover, the Lie algebra, [ÂG, Â
†
G] = 1, allows one to define a Fock space

consisted of the ground state |0〉G defined by,

ÂG|0〉G = 0, (5)

and the excited states, |n〉G, generated by successively acting A
†
G on |0〉G.

The next step is the variational procedure with respect to �G so that the energy
of the Hamiltonian (2) with respect to the Gaussian ground state is minimized.
Some of the nonperturbative effects of the Hamiltonian (1) are amalgamated to ĤG

by this process, which makes the correction term, VI , to be an order of ξG (defined
below) smaller than the Gaussian Hamiltonian. The VI term may be written as in
Bak et al. (1999, 2000) as

VI = ξGh̄�G

2

[
−1 + 1

3

4∑
k=0

(
4
k

)
Â

†k
G Â4−k

G

]
, (6)

where ξG

( = 3λh̄

2�3
G

)
< 1 for any value of λ due to the variational gap equation,

1 − ξG = ω2

�2
G

. In this sense, the Gaussian Hamiltonian ĤG describes a truncated

form of Ĥ up to O(ξ 0
G ).
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The final step in the variational perturbation theory is to apply the con-
ventional perturbation method to the Hamiltonian (2) by using the complete
set of states, {|n〉G}. In an operator method, the so called Liouville-von
Neumann approach, this is achieved by defining the 1st order annihilation
operator, Â(1) = ÂG + ξGB̂, so that the Hamiltonian Ĥ can be factorized as
Ĥ = h̄�

2 (Â†
(1)Â(1) + Â(1)Â

†
(1)), up to the first order in ξG (Bak et al., 1999, 2000).

It was shown that these operators satisfy the (real) q−deformed algebra (Bonat-
sos and Daskaloyannis, 1999) with deformation parameter, q2 = 1 + ξG/2. This
algebra leads to another Fock space determined by the 1st order creation operator,
Â

†
(1), which defines the 1st order states |n〉(1).

The fact that the first order perturbative correction to the Gaussian approxi-
mation is described by the q−deformed oscillator indicates that one may establish
a better variational perturbation theory by using the q−deformed oscillator as the
basis for the variational method. To develop the variational perturbation method
based on the q−deformed oscillator, we start by separating the Hamiltonian (1)
into the q−deformed part, Ĥq , and the perturbation term, V ′

I :

Ĥ = Ĥq + V ′
I , (7)

where V ′
I = Ĥ − Ĥq , and

Ĥq ≡ h̄�̄

2
(âq â

†
q + â†

q âq) (8)

is the Hamiltonian of the q−deformed oscillator (Bonatsos and Daskaloyannis,
1999), with âq and â

†
q satisfying the algebra,

[âq , â
†
q ] = 1 + εâ†

q âq , (9)

where we use this specific form of q−algebra, since this is satisfied with the
perturbative anharmonic oscillator (Bak et al., 1999, 2000). The q−ground state
is defined by

âq |0〉q = 0, (10)

and the q−excited states can be generated by successively acting â
†
q to the ground

state (Amore et al., 2004).
For calculational simplicity, we introduce dimensionless operator Ĥ n

m of order
O( h̄ 0):

Ĥ n
m =

(
h̄

2�q

)− m
2
(

�qh̄

2

)− n
2 x̂mp̂n + p̂nx̂m

2
. (11)

Similar operators are defined in Bender and Dunne (1989). The explicit expression
for âq , which satisfies the algebra (9) and make the Hamiltonian (8) to be (A.4) is
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obtained to O(ε2) in Appendix A,

âq = u∗
{
iĤ 1

0 +
(

1 + ε2

4

)
Ĥ 0

1 + ε(1 − ε/2)

4

[
Ĥ 2

1 − iĤ 1
2 + 2

3
Ĥ 0

3

]

+ ε2

32

[
−iĤ 3

2 − Ĥ 2
3 − i

4

3
Ĥ 1

4 + 8

5
Ĥ 0

5

]}
+ · · · , (12)

where u∗ = 1
2

(
1 − 1

4ε − 9
32ε2

)
. After inverting the expression for âq to get Ĥ 0

1

as a function of âq and â
†
q , and taking the expectation value with respect to the

q−ground state (10), we obtain

〈
Ĥ 0

2

〉
q

= 1 − ε + 13

24
ε2,

〈
Ĥ 0

4

〉
q

= 3 − 7ε + 33

4
ε2,

〈
Ĥ 0

6

〉
q

= 15. (13)

Note that we have introduced two variational parameters �̄ and ε. To es-
tablish the variational perturbation theory based on the q−Hamiltonian, we need
to express the q−Hamiltonian (8) in terms of the phase space variables, x̂ and
p̂. By demanding that the q−Hamiltonian is frictionless (no p̂x̂ + x̂p̂ term), the
q−Hamiltonian may be written as, up to O(ε2),

Ĥq = h̄�q

4

[
Ĥ 0

2 + Ĥ 2
0 + ε

3

(
1 − ε

2

)
Ĥ 0

4 − g3ε
2

4
Ĥ 0

6 + · · ·
]

. (14)

The parameters in (8) and (14) are determined in the Appendix A and g3 = − 23
45 .

Note that, unlike the case of the variational perturbation theory based on the
Gaussian approximation, the q−Hamiltonian Ĥq is not expressed in a closed form
in the phase space, but is written as a series in ε. Since we are to compute up to the
1st order correction to the variational result, it is enough to write Ĥq up to O(ε2)
as in Eq. (14).

The Hamiltonian Ĥ of Eq. (1) is then written as, Ĥ = Ĥq + V ′
I , up to O(ε2),

where

V ′
I = h̄�q

4

[(
ω2

�2
q

− 1

)
Ĥ 0

2 + ξ − 2ε + ε2

6
Ĥ 0

4 + g3ε
2

4
Ĥ 0

6 + · · ·
]

, (15)

with ξ = 3λh̄
2�3

q
. Taking expectation value of (7) with respect to the q−ground

state (10), the energy expectation value of the anharmonic oscillator becomes

q〈0|Ĥ |0〉q = h̄�q

4

[
1 + ε + 5

8
ε2 +

(
1 − ε + 13

24
ε2

)(
ξ

ξ0

)2/3

+
(

1 − 7

3
ε + 11

4
ε2

)
ξ

2

]
+ O(ε3). (16)
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The variational minimization of the energy expectation value (16), with respect to
�q and ε, leads to the gap equations,(

1 − ε + 13

24
ε2

)(
ξ

ξ0

)2/3

= 1 + ε + 5

8
ε2 −

(
1 − 7

3
ε + 11

4
ε2

)
ξ,

5

4

[
1 + 13

15

(
ξ

ξ0

)2/3

+ 11

5
ξ

]
ε =

(
ξ

ξ0

)2/3

+ 7

6
ξ − 1, (17)

where ξ0 = 3λh̄

2ω3
. The gap equations relate ξ to ε as,

ξ = 2ε

(
1 − 3ε

4
+ 65ε2

16

)
f, (18)

f =
(

1 − 3ε − 91ε2

8
+ 143ε3

16

)−1

. (19)

By using Eq. (17), the ground state energy of the anharmonic oscillator becomes

E0 = h̄ω

2

(
ξ0

ξ

)1/3 [
1 + ε + 5

8
ε2 −

(
1 − 7

3
ε + 11

4
ε2

)
ξ (ε)

4

]
+ O(ε3),

where ξ (ξ0) and ε(ξ0) are determined by the gap Eq. (17). We present the values
of ε, ξ , and E0 for several values of the coupling, ξ0, in Table I. As can be seen
in this Table, the maximal error of the present approximation is less than 0.8%.
Moreover, the accuracy is 200 times and 10 times better than the Gaussian and the
post (including the 2nd order perturbative corrections) Gaussian approximations
(Lee and Yee, 1997), respectively, for weak coupling. The maximum value of the
dimensionless expansion parameter, ε � 0.1717, is attained as ξ0 → ∞, which is
distinguishably small compared to the Gaussian expansion parameter, ξG = 1, at
the same limit. This clearly shows that the present method provides better nonper-
turbative information than the Gaussian approximation and 2nd order variational
perturbation results based on the Gaussian approximation.

To complete the 1st order perturbative corrections to the variational result,
we need to construct the 1st order creation and annihilation operators, which are
correct to O(ε2). To do this, we need to express the Hamiltonian (7) as a function
of q−operators, âq and â

†
q . Equation (18) enables one to write the coefficients in

the potential V ′
I , Eq. (15), as

ω2

�2
q

− 1 = ε2

4
g1(ε),

ξ − 2ε + ε2

6
= ε2

4
g2(ε), (20)

g1(ε) =
(

1 − 329

2
ε

)
f, g2(ε) = 3

(
1 + 247

36
ε − 143

36
ε2

)
f + 2

3
.
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Table I. Ground State Energy of Anharmonic Oscillator

Gaussian Post gaussian(2nd) Present method

ξ0 E0/(h̄ω) error(%) E0/(h̄ω) error(%) E0/(h̄ω) error(%) ξ ε

1/2 0 1/2 0 1/2 0 0 0
0.06 0.507 0.006 0.507 −0.0003 0.507 0.00003 0.0599 0.028
0.6 0.560 0.21 0.559 −0.037 0.559 0.0083 0.481 0.121
6 0.813 1.09 0.801 −0.37 0.806 0.307 1.264 0.162
60 1.531 1.75 1.49 −0.68 1.514 0.628 1.627 0.170
600 3.19 1.95 3.11 −0.79 3.15 0.731 1.722 0.171

∞ 0.375 ξ
1/3
0 2.01 0.365 ξ

1/3
0 −0.82 0.370ξ

1/3
0 0.766 1.75 0.172

Note that gi(ε)’s are of O(1), and thus this shows the fact that V ′
I is order of ε

smaller than Ĥq . The Hamiltonian is then written as,

Ĥ = h̄�̄

2
[âq â

†
q + â†

q âq] + h̄�qε
2

16

3∑
i=1

gi(ε)Ĥ 0
2i + · · · (21)

= h̄�̄

2
[âq â

†
q + â†

q âq] + h̄�qε
2

16
{g1(ε) + 3g2(ε) + 15g3 + [g1(ε)

+ 6g2(ε) + 45g3]
2∑

r=0

(
2
r

)
(â†

q )2−r (âq)r

+ (g2 + 15g3)
4∑

r=0

(
4
r

)
(â†

q )4−r (âq)r

+ g3

6∑
r=0

(
6
r

)
(â†

q )6−r (âq)r
}

+ O(ε3).

We now want to write this Hamiltonian as a generalized deformed oscillator:

Ĥ = h̄�

2

(
â(1)â

†
(1) + â

†
(1)â(1)

) + O(ε3), (22)

[
â(1), â

†
(1)

] = 1 + εα1â
†
(1)â(1) + ε2α2

(
â
†
(1)â(1)

)2
,

where the algebra defines the deformation function, F (y) = 1 + (1 + εα1)y +
α2(εy).4 Since V ′

I is O(ε2), correction to the annihilation operator would be of

4 The function F (y) is related to �(y) of Bonatsos and Daskaloyannis (1999) by F (y) = �(�−1

(y) + 1).
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order ε2, and thus, â(1) can be written as

â(1) = âq + ε2

[
1∑

n=0

un(â†
q )1−n(âq)n +

3∑
n=0

vn(â†
q )3−n(âq)n

+
5∑

n=0

wn(â†
q )5−n(âq)n

]
+ · · · . (23)

For this operator to satisfy the algebra (22), the following relations should hold
for the coefficients in Eq. (23):

w0 = 2

15
w1 = w2

24
= w3 + w∗

3

20
= g3

16

�q

�
, w4 = −w2

2
, w5 = −w1

5
,

v0 = v1

6
= (g2 − 10g3)

�q

16�
, v2 + v∗

2 = (g2 + 10g3)
3�q

8�
, v3 = −v1

3
,

u1 + u∗
1 = 0, u0 = �q

16�
(g1 + 6g2 + 45g3), (24)

which give, to O(ε2),

� =
[

1 + ε2

8
(g1 + 3g2 + 15g3)

]
�̄, (25)

α1 = 1 + 3ε

4
(g2 + 5g3), α2 = 15

4
g3.

To obtain the 1st order correction to O(ε2), we may set �q/� → 1 in Eq. (24),
since all the coefficients of �q/� have factors of order O(ε2). The 1st order
ground state is then defined by

â(1)|0〉(1) = 0, (26)

and its energy is the same as that in Eq. (20), since the variational approximation
leading to (20) includes the contribution from the potential V ′

I , as in the case of
the Gaussian variational perturbation. The nth excited states are given by

|n〉(1) = (â†
(1))

n

√
[n]!

|0〉(1), (27)

where [n]! = [n][n − 1] · · · [1], and [n] is defined by the recurrence relation [n +
1] = F ([n]), with [0] = 0. The energy of the nth eigenstate is given by

En = h̄�

2
([n] + [n + 1]) . (28)

In contrast to the ground state energy that shows a slight improvement for large ξ0,
the energies of the excited states receive considerable improvements compared to
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those in the Gaussian and the post Gaussian approximation, since the expansion
parameter ε is smaller than that of the Gaussian approximation.

The higher order corrections can be obtained similarly as in the above pro-
cedure. To obtain the 2nd order correction, for example, we need to write the
Hamiltonian (21) up to O(ε3), and to express it as a function of â(1) and â

†
(1). We then

write the Hamiltonian in a factorized form, H(2) = h̄�
2 (â(2)â

†
(2) + â

†
(2)â(2)) + O(ε4),

while â(2) satisfies a generalized deformed algebra.
The fact that the first order perturbative result can be expressed as a gener-

alized deformed oscillator, Eq. (22), also provides us with a possibility of estab-
lishing a new variational perturbation theory based on the generalized deformed
oscillator (22).

One of the main advantage, for using the algebraic approach is that, it is easy
to define the thermal state and coherent state. For example, the coherent state can
be written as the state |α〉,

â(t)|α〉 = |α〉α. (29)

The construction of the state |α〉 from the number states can be achieved from the
usual method of the q−oscillator (Cho et al., 1994).

It would be interesting to apply the present method to general quantum
mechanical systems. For example, the realization of suq(2) by q−boson can be
used as a basis of a perturbation theory for systems with spherical symmetric
potential. More interesting would be to generalize the present method to quantum
field theory by expanding the quantum fields in Fourier modes where each mode
acts as a generalized deformed oscillator.

APPENDIX A: CALCULATION OF THE ANNIHILATION OPERATOR

To have an explicit expression for the annihilation operator âq , we need the
q−annihilation operator as a function of x̂ and p̂,

âq =
∑
l=0

2l+1∑
n=0

εlu∗
n,lĤ

2l+1−n
n , (A.1)

which satisfies Eqs. (8) and (9). In obtaining this expression, the operator product
expansion formula,

Ĥ n
mĤ n′

m′ =
∑
k=0

ikhk(m, n; m′, n′)Ĥ n+n′−k
m+m′−k (A.2)

is useful. The expansion coefficients, hk are given as

h0 = 1, h1 = mn′ − m′n,
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h2 = − [
m(m − 1) + m′(m′ − 1)

]
nn′ − mm′ [n(n − 1)

+ n′(n′ − 1)
] − 3mm′nn′,

h3(m, n; m′, n′) = 2
(
f n′

m − f n
m′

) + (
f n

m+m′ − f n+n′
m

) − 3m′m(m − 1)

×
(

n + n′

3

)
+ 3n′n(n − 1)

(
m + m′

3

)

−3
[
m(m − 1)n′(n′ − 1) − m′(m′ − 1)n(n − 1)

]
× (m + m′ − 2)(n + n′ − 2), (A.3)

where f n
m = 6

(
m

3

) (
n

3

)
.

We assume that the Hamiltonian for the q-oscillator is written as the sum of
the kinetic energy and potential term dependent only on x,

Ĥq = p̂2

2
+ �2

q

2
x2 + c

4
x4 + d

6
x6 + · · · . (A.4)

If we demand the operator âq to satisfy the algebra (9) and the Hamiltonian (8) to
be (A.4) we get âq in Eq. (12) and the q−Hamiltonian

Ĥq = h̄�q

4

[
Ĥ 0

2 + Ĥ 2
0 + ε

3

(
1 − ε

2

)
Ĥ 0

4 − g3ε
2

4
Ĥ 0

6 + · · ·
]

. (A.5)

The parameters in (8) and (14) are determined as

�̄ =
(

1 + 1

2
ε + 1

8
ε2

)
�q, c = 4ε�3

q

3h̄

(
1 − ε

2

)
, (A.6)

d = −3ε2g3�
4
q

h̄2
, g3 = −23

45
.

The present result can be easily checked using mathematica or maple, where the
noncommutative multiplication is implemented.
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